On the Genus of Z3 × Z3 × Z3

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contractible configurations, Z3-connectivity, Z3-flows and triangularly connected graphs

Tutte conjectured that every 4-edge connected graph admits a nowhere-zero Z3-flow and Jaeger, Linial, Payan and Tarsi conjectured that every 5-edge connected graph is Z3-connected. In this paper, we characterize the triangularly connected graphs G that are Γ-connected for any Abelian group Γ with |Γ| ≥ 3. Therefore, these two conjectures are verified for the family of triangularly connected gra...

متن کامل

Degree condition and Z3-connectivity

Let G be a 2-edge-connected simple graph on n ≥ 3 vertices and A an abelian group with |A| ≥ 3. If a graph G is obtained by repeatedly contracting nontrivial A-connected subgraphs of G until no such a subgraph left, we say G can be A-reduced to G. Let G5 be the graph obtained from K4 by adding a new vertex v and two edges joining v to two distinct vertices of K4. In this paper, we prove that fo...

متن کامل

Engineering Theories with Z3

Modern Satisfiability Modulo Theories (SMT) solvers are fundamental to many program analysis, verification, design and testing tools. They are a good fit for the domain of software and hardware engineering because they support many domains that are commonly used by the tools. The meaning of domains are captured by theories that can be axiomatized or supported by efficient theory solvers. Nevert...

متن کامل

A Z3-graded generalization of supermatrices

We introduce Z3-graded objects which are the generalization of the more familiar Z2-graded objects that are used in supersymmetric theories and in many models of non-commutative geometry. First, we introduce the Z3graded Grassmann algebra, and we use this object to construct the Z3matrices, which are the generalizations of the supermatrices. Then, we generalize the concepts of supertrace and su...

متن کامل

Proofs and Refutations, and Z3

Z3 [3] is a state-of-the-art Satisfiability Modulo Theories (SMT) solver freely available from Microsoft Research. It solves the decision problem for quantifier-free formulas with respect to combinations of theories, such as arithmetic, bit-vectors, arrays, and uninterpreted functions. Z3 is used in various software analysis and test-case generation projects at Microsoft Research and elsewhere....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1988

ISSN: 0195-6698

DOI: 10.1016/s0195-6698(88)80002-7